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ABSTRACT

Classification models are used in component content management
to identify content components for retrieval, reuse and distribution.
Intrinsic metadata, such as the assigned information class, play an
important role in these tasks. With the increasing demand for ef-
ficient classification of content components, the sector of technical
documentation needs mechanisms that allow for an automation of
such tasks. Vector space model based approaches can lead to suf-
ficient results, while maintaining good performance, but they must
be adapted to the peculiarities that characterize modular technical
documents.

In this paper we will present domain specific differences, as well
as characteristics, that are special to the field of technical docu-
mentation and derive methods to adapt widespread classification
and retrieval techniques for these tasks. We verify our approach
with data provided from companies in the sector of manufacturing
and mechanical engineering and use it for supervised learning and
automated classification.

Keywords

Technical Documentation; Content Management; Vector Space
Model; Machine Learning; Text Classification

1. INTRODUCTION

Complex documents, such as technical product documentation
required in industrial engineering, are mostly composed of small
content components' that allow for referenced reuse and cost effi-
cient translation [21]. XML-based component content management
systems (CCMS) provide a professional environment to create and
assemble these components.

ccMs are often enhanced by classification methods in order
to identify content components for retrieval and distribution [5].
For example the assignment of information classes is usually done

'In other literature and commercial applications content components are
also referred to as fopics, modules or content modules [5, 19].
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Table 1: Training and test sets
words

Set  Sector Units  “0w=  Classes
A mechanical eng. 570 173 11
B mechanical eng. 278 41 10
C manufacturing eng. 3947 97 22

manually by technical writers at the time of creation and is based
on experience and editorial guidelines. However, for large amounts
of content, (e.g. migrating legacy data) this method is extremely
time consuming. There are currently no tools or specific meth-
ods available for automating this task focusing on characteristics of
technical product documentation.

Vector space classification is, in general, an efficient way to do
such bulk classifications but is often optimized towards whole doc-
uments and not parts thereof. In addition, the method usually does
not recognize semantic structures which are widely used in com-
ponent content management (CCM). Therefore, CCM content is in
most cases ideal training data due to its semantic richness, consis-
tent style of writing and the XML-based data format.

In our approach we want to consider these peculiarities of tech-
nical documentation and adjust standard vector space classification
to utilize them for better accuracy in automated classification tasks.

2. METHODOLOGY

At first we characterize important properties of component con-
tent management based on industry best practices and international
standards. We then make assumptions about the effects on classi-
fication tasks and verify them in a test set-up with three different
real-world data sets (about 4,800 manually classified content com-
ponents). All test data was provided by companies in the sectors of
manufacturing and mechanical engineering and is in German.

In preprocessing, text from components was extracted and un-
necessary punctuation and XML syntax removed (for use of seman-
tics see section 4.3). The multi-class test set-up was based on a
vector space model (VSM), instead of more sophisticated meth-
ods (such as Neural Networks), for performance reasons. A con-
tent component for classification is represented as a vector m =
(w1,w2,...,w,) where n is the number of tokens chosen as features
of the component. The value w; represents the semantic weight of
token i [11]. In supervised learning we built a n X ¢ token-by-class
matrix M = {w;;} for a set of distinct classes C. As classifier we
use cosine similarity [14].

For cross validation we randomly divided the test data into a
training set and a validation set (4:1).



3. CHARACTERISTICS OF CCM

The following sections outline characteristics of CCM that are
different from other content types and which are relevant for clas-
sification tasks based on vector space models.

3.1 C(lassification models

In the field of technical communication, manuals and document
sections contained therein, are constrained in many ways by stan-
dards and regulatory rules. One of the most important regulations
states predefined content types in the sequence of traditional chap-
ter structures of manuals and of interactive electronic technical doc-
umentation [7]. Well known examples are manuals of military
and avionic vehicles or of medical devices [6, 18, 20]. For con-
tent component management applications, this usually translates
into distinct sets of information classes, which then depend on spe-
cific business domains. Content components have to be created
according to the predefined information classes and are, therefore,
instances of one intrinsic information class. Consequences for the
use of terminology and other editorial guidelines are outlined in the
following sections.

A metadata-driven approach for defining content components is
defined as PI Classification method in [S]. In this model intrin-
sic metadata is coupled with product components by correspond-
ing product classes (P) and include the required set of informa-
tion classes (1). Usually, PI classification models are defined as
taxonomies and describe an, at least, two dimensional information
space. Each content component has to have distinct coordinates in
the space of intrinsic product and information classes. Technical
writers have to assign content to a unique class and have to follow
the corresponding rules for content creation.

In this framework, there are additional extrinsic PI classes de-
scribing the intended or actual use of components in end-products
and final document types (which can usually be coupled to named-
entity recognition). In the course of this paper, we focus mainly
on the intrinsic information classes. The most common starting
point for defining information classifications are the distinct sets of
descriptive vs. procedural content classes. Descriptive content in-
cludes, for example, set-up of machines, process or functional de-
scriptions of hard and software or introductory sections. Procedural
content covers all types of task-oriented information like installa-
tion, how-to-use instructions, maintenance and repair or disposal
of products. In general, procedural content and the correspond-
ing taxonomy of information classes is organized according to the
product life cycle. The intrinsic information classes used in indus-
trial CCMS applications build up a well-known set of classifications
and are a starting point for our approach to automated text classifi-
cation.

3.2 Standardized patterns

Due to their normative nature, technical documents have to be
concise and unambiguous. This is often resembled in editorial
guidelines or style guides [7], which remind technical writers to
abstain from the use of synonyms, ambiguity, direct speech, filler
words, sentiments or empty phrases. Instead standardized gram-
matical patterns are used within content components to increase
consistency and reusability across multiple documents. This de-
creases translation costs when used in combination with translation
management systems (TMS) and improves reading comprehension
for users. These patterns differ in style, whether they depict in-
structive or descriptive content. This helps readers to differentiate,
for example, between tasks, concepts or embedded safety messages
[2]. Content components of one information class often contain
only one kind or one specific combination of grammatical patterns
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and word classes (e.g. only imperative verbs in instructions).

XML-based information models, such as DITA [16], DOCBOOK
[15] or P1-MOD [23], reflect this with semantic content components,
as for example “descriptive”, “task’ or “concept”.

3.3 Specific terminology

Terminology and overall choice of words used in technical docu-
ments is often highly specific to the company that manufactures the
product and is strictly controlled within the principles of terminol-
ogy work and enforced by terminology management system [8, 9].
Terms for describing tasks and concepts are mostly precise tech-
nical expressions that are usually unique to the engineering sector,
to which the product belongs (e.g. printing presses or construction
machinery).

For better brand recognition among customers, some companies
also explicitly mention the full brand/model combination with ev-
ery occurrence of the product. This leads to very characteristic
word distributions in content components that are often unique for
one company or even one branch of a company.

3.4 Size of components

The actual size of content components depends on several fac-
tors, such as strategic decisions, product complexity or software
features of the cCMS. Component properties have been analyzed
systematically for various companies and results range from small
content fragments with just a few words up to components includ-
ing several hundreds or thousands of words. For one example cor-
pus in [17], the average component size was about 150 words,
whereas the usual size of a document was approximately 12,000
words (German language).

Fragments are usually included within other content compo-
nents, but can also be manually classified within CCMS. One can
find that small size content fragments are used, for example, in
more complex reuse scenarios within variant management func-
tionality of CCM applications [19, 22].

The data examined for this paper had average word counts per
content component or fragment of respectively 173, 97 and 41
words (cf. Table 1). The size of components is, therefore, signifi-
cantly smaller than that of typical documents (approx. 1:75). This
results in fewer features per unit which can be evaluated by predic-
tion algorithms in comparison to document classification.

3.5 Training and validation data

Companies, which are using component content management in
combination with a well defined classification model already have
high quality training material at hand that is suitable for supervised
learning. Content was classified manually by experts and written
in a controlled manner according to editorial guidelines. Standard-
ized information models can also provide further information about
semantic properties and functions of parts of the text [4]. However,
for some parts, the technical nature of the content has a negative im-
pact on classification performance (e.g. for tables, legends or lists).

Validation data can either be unclassified content components
(from sources other than the CCMS) or unstructured and unclassi-
fied PDF documents or other file formats used for archiving. This
results in potential differences between training and validation data
regarding format and structure of the content.

3.6 Quality assurance

Due to high safety standards and legal implications that adhere
to technical documentation, a proper quality assurance is manda-
tory before publishing [7, 10]. Especially in the European Union
all necessary technical documentation for machinery is considered



Table 2: Accuracy for different n-grams as tokens

n SetA[%] SetB[%] SetC[%] Avg. [%]

1 79.26 77.78 67.13 74.72

2 80.49 73.91 76.88 77.09

3 78.75 68.42 76.29 74.49

{1,2} 82.14 80.43 73.70 78,76
{1,2,3} 90.48 85.36 78.12 84.65

as part of the product [1]. The correctness and completeness of
published documents is, therefore, crucial for the integrity of the
whole product. Because some CCMS rely on classifications of con-
tent components for the automated composition of documents, the
classification algorithm is a possible vulnerability for product in-
tegrity. This entails the need for manual control in cases where the
classification algorithm is not confident in its results.

4. IMPLICATIONS

In the following section we derive implications for supervised
learning and automated classification for content components from
characteristics presented in the previous section and verify them
with our test data (cf. Table 1).

4.1 Feature selection

Standardized wording and grammatical patterns decrease the to-
tal number of distinct words and word combinations in technical
documentation in comparison to other text types (cf. section 3.2 &
3.3). This is generally preferable in text classification because it
reduces the usually high dimensionality of the feature space [3].
As content components are also much smaller than documents (cf.
section 3.4), the number of features for representing an object for
classification is further reduced by a great amount.

However, most content components in technical communication
have both distinct single words and recognizable word patterns as
important characteristics of their information classes. This means
using single terms or n-grams (e.g. bigrams or trigrams) as exclu-
sive features is not optimal. Our results confirm the assumption
that a combination of n-grams of different n is in most cases the
preferable method for representing content components (cf. Table
2 for g = 2.5 and w;j = TF-ICF-CF).

4.2 Token weighting

There are several ways to assign semantic weight to a token with
TF-IDF as the best known method [3, 11, 12, 13]. To improve ac-
curacy in document categorization, TF-IDF has been extended to
TF-IDF-CF, which considers in-class characteristics of tokens [13].
However, in CCM the reference size of one unit is a content com-
ponent and not a document. Therefore, document-based weighting
is not always suitable for classification tasks.

Due to the nature of our training data, from which we can derive
overall token frequency tf; as well as in-class frequency tcf;; and
inverse class frequency icf;;, we adapted TF-IDF-CF to utilize in-
verse inverse class frequency (ICF) to differentiate between classes
instead of IDF. For a set of distinct classes C with classes j and
tokens i weight w;; is:

C
wi; = log (1+1f;) xlog (1+ %) *
1
Our results confirm that this method performs best as weighting
method on our data compared to other schemes (cf. Table 3 for
g=2.5andn=1{1,2,3}).

1ij

C )
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Table 3: Accuracy for different weighting methods

wij Set A[%] SetB[%] SetC|[%] Avg.[%]
TF-IDF 52.13 56.27 50.45 52.95
TF-IDF-CF 75.79 76.08 63.37 71.75
TF-ICF-CF 90.45 85.36 78.12 84.65

4.3 Semantic quantifiers

As shown in section 3.5, semantic information about the text
structure of content components is usually available in training data
but cannot be directly applied in classification due to the lack of re-
liable structure elements (as for example in legacy documents). To
circumvent this, it is possible to artificially increase the term fre-
quency ¢ f; with a quantifier ¢ for tokens that have special semantic
meaning in one specific class (e.g. function or setup descriptions,
action sequences), so that in supervised learning ¢ f; is extended to:

tfig=tfixq forq>0 2)

Test results show that for g between 2 and 5, classification accu-
racy can be increased up to 10% (¢ = 2.5). However, quality and
choice of semantic structures for quantification heavily influences
the benefits of semantic qualifiers. Thus in future work we want
to examine methods for compiling comprehensive lists of semantic
structures which are relevant for token weighting and their corre-
sponding quantifiers.

4.4 Confidence scoring

For reasons discussed in section 3.6, it must be possible to mea-
sure confidence of classification results in regard to content com-
ponents which could belong to multiple classes. There are several
methods for comparing per-class classification scores, such as the
softmax function or the standard deviation, however neither of them
suited our need for a reliable quality assurance measure.

S — 3)
S1 —Sn

We base our confidence score p on the presence of single outliers
(high confidence) or close runner-ups (low confidence). Per-class
classification scores s, for n classes c are sorted from high (1) to
low (n). p is then expressed as ratio of first to second and first
to last classification choice. After examining confidence scores on
our test sets, we can see that only a small fraction (0 —3%) of con-
tent components are incorrectly classified and have high confidence
scores (p > 0.7).

S. APPLICATIONS

In this section we want to give a short overview of potential ap-
plications for an automated classification of content components in
technical communication.

Quality management.

Well defined classification models and good classification by
technical writers should result in a close to 100% accuracy rate
when training and validating with the same data set. This circum-
stance can be utilized to measure general quality of classification
or the overall classification model. In our tests, we observed that
classification errors in self-validation can be a strong indicator of
wrong manual classification of a content component. Results for
our data match our subjective rating with set A (97.21 %) and B
(96.39 %) having high quality classification as opposed to Set C
(89.03 %) with a more ambiguous classification model.



Data migration.

With the implementation of a CCMS, companies often start using
classification models (e.g. PI classification) to take advantage of
more advanced features, such as document aggregation or retrieval
functions. To migrate existing (structured) content to the system
it is also necessary to have legacy content classified, which is a
time consuming task. In this case, automated classification of con-
tent components, which can utilize newly composed and manually
classified content as training data, is desired.

6. RELATED AND FUTURE WORK

Domain-specific classification and their applications for con-
struction project documents were analyzed in [3]. Similarities of
this work are the availability of predefined classification frame-
works and the focus on automation of the classification task.

Research on utilizing text similarity measures to aid technical
writers in reusing content components was presented in [21]. The
results could be used to verify if components identified for reuse
have matching classes assigned.

The TF-IDF-CF method we base our token weighting on was in-
troduced and tested in [13]. More weighting schemes are discussed
and compared in [11] and [12].

In future work we will extend our research further to other data
sets and focus on unstructured documents as a source for classifi-
cation. We examine optimization potentials for semantic quanti-
fiers and confidence scoring. We plan to refine our models to in-
clude grammatical patterns with advanced NLP technologies (Part-
of-speech tagging).

7. CONCLUSIONS

Component content management has different characteristics
and requirements than default document classification but multiple
real-world scenarios where automated classification is applicable
and necessary. PI classification models provide a suitable frame-
work for these applications.

We identified several areas of improvement and made proposals
for adapting existing models for use in technical communication.
The improvements include the combination of terms and n-grams
as features for classification, a modified token weighting scheme
for in-class characteristics, semantic quantifiers to leverage infor-
mation present in training data and a first approach to reliable con-
fidence scoring on cosine similarity classifier results.

Results of this paper are based on content components from spe-
cific engineering disciplines but can also be applied to other sectors
(e.g. software documentation). Our adjustments have shown sig-
nificant improvements over document-oriented classification tech-
niques and are a good foundation for future research.
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