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Automated classification is usually not adjusted to specialized domains, due to a lack of suitable data collec-
tions and insufficient characterization of the domain-specific content and its effect on the classification process. This
work describes an approach for the automated multi-class classification of content components used in technical
communication based on the vector space model. We show that differences in form and substance of content
components require an adaption of document-based classification methods and validate our assumptions with
multiple real-world data sets in two languages.

As aresult we propose general adaptions on feature selection and token weighting as well as new ideas for the
measurement of classifier confidence and the semantic weighting of XML-based training data. We introduce several
potential applications of our method and provide a prototypical implementation. Our contribution beyond the state
of the art is a dedicated procedure model for the automated classification of content components in technical
communication which outperforms current document-centered or domain-agnostic approaches.
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1. INTRODUCTION

Large and complex documents used in technical communication are often composed of
smaller building blocks, called content components' (Andersen, 2011). This enables refer-
enced reuse of components across and within different documents and cost efficient transla-
tion in cases where only a subset of a document is changed (Soto et al., 2015). Examples for
these document types are any kind of technical information (manuals, reports, educational
material) but also standards documents, patents and some specifications types. Content com-
ponents can resemble, but are not limited to, subsections of a document and are in most cases
conceptually self-contained.

Component content management systems (CCMS) are a popular way to create, manage
and assemble content components, especially for the creation of multi-authored documents
(Grahlmann et al., 2010). In most cases content is written and stored in semantically struc-
tured XML-based information models® (Di Iorio et al., 2012) and manually enriched with
metadata, such as predefined classification models, in order to identify content components
for retrieval and distribution (Drewer and Ziegler, 2011). Advanced CCMS use classifica-
tions for the automated assembly of information products (e.g. printed manuals). Informa-
tion models can be either native to the CCMS, in-house development of the company or
standardized (such as DocBook (OASIS, 2008) or PI-Mod (Ziegler, 2011)).

Address correspondence to Jan Oevermann and Wolfgang Ziegler, Karlsruhe University of Applied Sciences, Faculty for
Information Management and Media, Moltkestra3e 30, 76133 Karlsruhe, Germany
n other literature and commercial applications content components are also referred to as “topics”, “modules” or “content
modules” (Rockley et al., 2003; Drewer and Ziegler, 2011).
2Information models are often referred to by their technical representation: DTDs (document type definitions) or schemas.
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For technical documentation, hierarchical PI classification taxonomies® or related meth-

ods are a popular and established framework to classify content components for these tasks
(Ziegler and Beier, 2015). The assignment of classes is usually done by technical writers
at the time of development and is based on experience and editorial guidelines. However,
classifying large amounts of content manually (e.g. when migrating legacy data) is time con-
suming and prone to error. To the best of our knowledge, there are currently no specialized
tools or specific methods available to automate this task, which focus on the characteristics
of content components. This is in contrast to the demands of the technical documentation
sector, which rely on targeted and reliable information retrieval, e.g. for service technicians
or technical personnel. Classifying metadata can be used to integrate content components
in more dynamic scenarios, where information is aggregated or filtered automatically and
utilized in faceted search (Zheng et al., 2013; Broughton, 2006). This is reflected in the rising
popularity of Content Delivery Portals (CDP) which provide users with a metadata-based
way to access modular information (Ziegler and Beier, 2015). Classifying metadata can also
serve as a basis for advanced information access methods, where classification criteria is
preset through QR codes, RFID chips or user location. Due to the amount of legacy content in
most companies, automated classification is necessary to provide these information services.
Recently published standards for the exchange of technical documentation integrate these
ideas with Linked Data technologies (European Association for Technical Communication -
tekom e. V., 2017).

Classification based on the vector space model (VSM) is a well known (Manning and
Schiitze, 1999; Sebastiani, 2002) and performance efficient (Le and Mikolov, 2014) way to
do such bulk classification. However, most applications are optimized for entire documents
and not only parts thereof regarding feature extraction and weighting. In addition, most
implementations focus on plain text and do not recognize semantic structures (Di lorio
et al., 2014), e.g. in XML-based training data, which is widely used in component content
management and can contain additional meta information about the content.

In this work we want to present an approach which considers these particularities of
content components and adjusts standard vector space classification for better accuracy in
this specialized task. We introduce a new weighting method and feature extraction for content
components, first approaches to confidence measuring and semantic weighting of XML ele-
ments with special meaning in information models. Furthermore we investigate correlations
regarding the classification framework used for the content, number and type of classes as
well as language and size of components. Our experiments serve as basis for more research
on this domain-specific application of machine learning methods.

2. RELATED WORK

This article is an extended version of work published by Oevermann and Ziegler (2016).
We expand our previous work by validating our results with eight more classification tasks,
including an additional data set and an added language for one of the sets. An additional
weighting technique and other token combinations are used in experiments to get a more
detailed comparison. We present new insights on semantic weighting, confidence score re-
liability and stemming. We added current and future applications and provide a working
prototype including the source code of the implementation.

Characteristics of text in component content management applications were discussed,

3Where PI is a reference to Product and Information, the two dimensions in which information can be classified intrinsically
(Drewer and Ziegler, 2011).
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among others, by Bailie and Huset (2015), Andersen (2011), Drewer and Ziegler (2011),
Grahlmann et al. (2010) and Rockley et al. (2003).

Effective feature extraction methods for text classification were discussed by Biricik
et al. 2012 and 2009. The authors introduce a new method called “Abstract Feature Ex-
traction” motivated by TF-IDF and TF-ICF, which significantly improves accuracy across
different classifiers. The TF-IDF-CF method we base our token weighting on was introduced
and tested by Liu and Yang (2012). More weighting schemes are discussed and compared by
Ko (2012) and Lan et al. (2005).

Domain-specific approaches for automated classification are discussed by Golub (2006)
focusing on web documents. The author sees the lack of available document collections as
one of the reasons for missing classification research on certain domains. One instance of
a detailed domain-centered approach is the work by Caldas et al. (2002). The authors ana-
lyze automated classification methods and their applications for the domain of construction
project documents. Similarities of their work and our work are the availability of predefined
classification frameworks and the focus on process automation of the classification task.

Information retrieval for XML-based documents is extensively covered in the literature.
In work by Lalmas (2009) several ranking methods for elements in XML-based documents
are discussed. The author comes to the conclusion that hierarchical context (e.g. ancestor
elements) matters most when comparing retrieval scoring strategies for XML elements. We
describe a similar approach with class hierarchies in section 8.3. Kotsakis (2002) presents
a ranking approach, that combines TF-IDF with a coefficient of the structural element po-
sitioning. Disadvantages of these methods are, that for each single path in the collection a
coefficient has to be chosen. This approach was not suitable for our data sets. Di lorio et al.
(2014) describe how textual XML documents are based on multiple element patterns, which
can have different levels of relevance (e.g. junk structures vs. representational structures).
Their conclusions verify our hypothesis, that a weighting of elements in XML-based content
is reasonable (especially in the case of so called surrogate elements).

Research on utilizing machine learning methods and similarity measures in the field
of technical documentation was recently done by Soto et al. (2015). Their work describes
methods to aid technical writers in reusing content components with automated text similar-
ity measures. Their method could be combined with ours, to verify if components identified
for reuse have matching classes assigned.

3. METHODOLOGY

After characterizing several important properties of component contents based on indus-
try best practices and international standards, we make conclusions about the effects of these
characteristics on classification tasks based on VSM. We verify our adaption in a test set-up
with 11 classification tasks on four real-world data sets consisting of about 7000 manually
classified content components in two languages.

3.1. Scope

Although the experiments in this work were solely performed with content obtained
from technical documentation, its results and conclusions are applicable to a wider scope of
documents, which meet the characteristics defined in section 4, such as certain international
standards, patents or modularized business documents (e.g. specifications).
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3.2. Test data

Our test data consists of different kinds of technical information and was provided by
companies from different engineering sectors for research purposes (see table 1). Due to
the company-confidential nature of the contents, the data sets cannot be made public. The
content language is either German or English. One data set (D) contains about 80 content
components available in both languages. All content was written by professionals (technical
writers or subject matter experts) according to editorial standards, therefore, a certain quality
can be expected of the data available (see also section 4.6).

In comparison to previous experiments (Oevermann and Ziegler, 2016) we could en-
large the overall corpus of content components, add one more language and an entire new
company-provided set.

TABLE 1. Training and test sets

Set  Info.model* Language  Units % Classification system Classes
A syst. en-US 1087 515  2-level information type 10/26
B open de-DE 4186 87  2-level information type 6/22
1-level product type 28

C corp. de-DE 663 180  1-level information type 11
1-level product type 22

D open de-DE 584 51  2-level information type 8/14
en-GB 1070 57  2-level information type 8/17

All data sets are XML-based and have classifications that follow a PI classification tax-
onomy for information types with one or two levels. Two data sets have additional product-
related classifications. The number and labels of classes and the average size of components
differ from company to company (see also section 4.2). As an example for typical class
labels, we list classes contained in set C (10 examples each, translated from German):

Intrinsic information classes (information type)

Maintenance, Assembly/Disassembly, Operation, Diagnosis, Emergency operation, Product information, Safety
information, Troubleshooting, Transport, Preface/Introduction.

Intrinsic product classes (product type)

Drive group, Work equipment, Work hydraulics, Equipment/Options, Brake system, Electrical system, Hy-
draulic components, Cooling system, Steering system, Lubricating system.

Sets B and D are structured according to the open source PI-Mod information model
(Ziegler, 2011), set A was stored as a CCMS-specific variant of semantic HTML and set C
was provided in an custom information model used by the company.

4The XML-based information model (IM) the content was created in. syst.: CCMS-specific IM, open: standardized open
source IM, corp.: in-house developed corporate IM
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3.3. Preprocessing

In a preprocessing step, all plain text from components was extracted and unneces-
sary white-space, digits, special characters and punctuation were removed. Features were
extracted as a combination of single words and word groups (as described in section 5.1)
and then weighted with the TF-ICF-CF method described in section 5.3. No stemming was
applied on words for reasons discussed in 5.2.

3.4. Test set-up

In supervised learning we build a n x ¢ token-by-class matrix M/ = {w;;} for a set
of distinct classes C'. For each token ¢ we calculate the class-specific semantic weight w;;
for class j (Ko, 2012).% Each class is therefore represented by a prototypical class vector Djs
which contains the characteristic token distribution of the class across all content components
in the training data (cf. section 5.3).

A content component for classification is represented as a vector m = (w1, wa, ...wy,)
where n is the number of tokens chosen as features of the component and w is the weight
of the tokens. The similarity is calculated for each component-class combination and the
confidence score for the prediction (closest class) is derived (see section 6).

All classification tasks in this work are multi-class problems. Our set-up is based on a
vector space model, instead of on a more sophisticated method (such as neural networks),
for performance reasons. For the classifier we chose simple cosine similarity (Manning and
Schiitze, 1999) instead of support vector machines or naive Bayes due to the high numbers
of features and the heterogeneous size and distribution of classes (Colas et al., 2007).

The same set of parameters and configurations was used for all classification tasks
independent of the language of the data set. Compared to previous results (Oevermann and
Ziegler, 2016) no semantic weighting for specific XML-elements was used to allow for a
better comparison of results (see section 5.4).

3.5. Measurement

For 10-fold cross validation we randomly divided the test data into a training set and
a test set (9:1) (Kohavi, 1995). Results are measured as mean accuracy (Sokolova and
Lapalme, 2009) across all classes in the set. Variance between the results of the individual
cross validation tests are indicated as mean squared error (MSE).

4. CHARACTERISTICS

In the following sections, we outline characteristics of content components, which can
effect classification tasks based on the vector space model.

4.1. Content types

The specialized domain of technical communication covers the writing and structuring
of user manuals. Content and document sections contained therein are constrained in many
ways by standards and regulatory rules. One of the most important regulations stipulates
predefined content types in the sequence of traditional chapter structures for manuals and

5Weights are normalized per class j as = ;jij

SMSE calculated as s y_1 =
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interactive electronic technical documentation (IEC 82079-1, 2012). These sections are re-
sembled by content components in CCMS. The corresponding content types follow the
lifecycle of engineering products (2006/42/EC, 2006).

This covers, for example, information about transportation, installation and adjustment
of machinery, or instructions on how to use, maintain and dispose a product. Additional
technical data, advice on safety issues and conceptual or other descriptive information (e.g.
configuration, layout and functionality of the product) must also be included. The relevant
regulations for a product, therefore, demand certain sets of content types for the correspond-
ing technical documentation. These sets are often an essential part of specialized information
models. Well known examples are manuals for military and avionic vehicles or for medical
devices (S1000D, 2012; ATA iSpec 2200, 2014; GHTF/SG1/N70, 2011).

4.2. Classification models

For CCM applications, predefined content types usually translate into a distinct set of
intrinsic information classes, while documents (which can contain several content types) are
classified with extrinsic information classes, such as “service manual” or “user guide”. The
same kind of classification can be applied to product-related properties. In this case intrinsic
product classes are used to associate content with the assembly group or part of the product
that is described (e.g. “hydraulic pump” or “cooling unit”). Extrinsic product classes relate
to the products (model, series), for which the content is valid.

This metadata-driven approach for content management is defined as PI classification
method by Ziegler (Drewer and Ziegler, 2011) and was developed for the classification
of content components. Usually, PI classification models are defined as taxonomies and
describe at least a two dimensional information space. Further extensions of the metadata
model can take more complex relations into account, e.g. in-between content components in
ontology-based approaches. Since most CCMS in technical communication are restricted to
simple taxonomies or even lists, we focus on these.

Each content component has to have distinct coordinates in the information space of
intrinsic product and information classes. Technical writers assign these classes to content
components at the time of development and have to follow the corresponding rules for text
preparation. Main use cases of the method are an efficient retrieval in CCM or CDP applica-
tions, the automated aggregation of documents and classification-based cross-referencing.

In the course of this paper, we focus mainly on intrinsic information classes, because
of their direct connection to the linguistic properties and underlying information models of
content components. In addition, we test the same classification methods on intrinsic product
classes to evaluate if these require different adjustments to the classification process. Extrin-
sic classes are not covered by this work, as they are, in most cases, multi-label problems and
can be solved in other ways. For example, the assignment of extrinsic product classes may
be solved through named entity recognition.

4.3. Standardized patterns

Standardized grammatical patterns are used within content components to increase con-
sistency and reusability across multiple documents. Especially technical manuals have to
be concise and unambiguous, due to their normative nature and recurring structural and
grammatical patterns are used to improve reading comprehensibility, e.g. for safety advises
(ANSI Z535.6, 2006). These rules are often resembled in editorial guidelines or style guides
(IEC 82079-1, 2012), which remind technical writers to abstain from the use of synonyms,
ambiguity, direct speech, filler words, sentiments or empty phrases. Some companies even
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utilize controlled languages like Simplified Technical English to further restrict grammar and
vocabulary (Kincaid et al., 1991).

Standardizing patterns can also reduce translation costs when used in combination with
translation management systems (Allen, 1999) and improve readability. For example, gram-
matical patterns differ in style, whether they depict instructive or descriptive content. This
helps readers to differentiate between different types of content, such as descriptions, tasks
or safety advises in manuals.

Content components of one information class often demand only one kind or one specific
combination of grammatical patterns. XML-based information models, such as DITA (OA-
SIS, 2010), DocBook (OASIS, 2008) or PI-Mod (Ziegler, 2011), incorporate this as special
XML-elements for semantically different content components (cf. default DITA topic types:
concept, task, reference, etc.). Controlled language checker software or authoring guidelines
can help enforce these grammatical and syntactical rules depending on the content type.

4.4. Specific terminology

Terminology and choice of words used in technical and normative documents is often
highly specific to the subject the content describes and is, in some cases, strictly controlled
within the principles of ferminology work and enforced by terminology management system
(ISO 704, 2009; ISO 26162, 2012). Characteristic terms are often precise technical expres-
sions which are usually unique to the engineering sector the content belongs to.

As occasionally parts of technical communication material are also used for marketing
purposes, some companies explicitly mention the full brand/model combination with every
occurrence of the product name for better brand recognition. This leads to highly charac-
teristic word distributions in content components which has advantages for classification
performance but restricts the use of the trained model for content aside from the scope trained
in (either the company or the branch of the company).

4.5. Size of components

The actual size of content components depends on several factors, such as strategic
decisions, product complexity or software features of the CCMS (Drewer and Ziegler, 2011).
Component properties have been analyzed systematically for various data sets from compa-
nies and results range from small content fragments with just a few words up to components
including several hundreds or thousands of words. For one example, a corpus examined by
Oberle and Ziegler (2012) had an average component size of about 150 words, whereas the
usual size of a document was approximately 12,000 words.

Fragments are usually included within other content components, but can also be man-
ually classified within CCMS (for example safety advices in manuals). Small size content
fragments are used, for example, in more complex reuse scenarios within variant manage-
ment functionality of CCM applications (Rockley et al., 2003).

The data sets examined for this work had average word counts between 51 and 515
words per content component (cf. table 1). The size of components is, therefore, significantly
smaller than that of typical documents (approx. 1:75, which also equals the average number
of content components in one document). This results in fewer features per unit which can
be evaluated by prediction algorithms in comparison to document classification and a high
variance in size for different data sets (cf. table 1).

4.6. Training and test data

Companies using component content management in combination with a well defined
classification model already have high quality training material at hand which is suitable for
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supervised learning. Content was classified manually by experts and written in a controlled
manner according to editorial guidelines. Standardized information models can also provide
further information about semantic properties and functions of parts of the text, as well as,
semantically enriched HTML (see section 5.4). However, for some parts, the highly technical
nature of the content can have a negative impact on classification performance (e.g. for tables,
legends or lists).

Data for automated classification can either be structured but unclassified content com-
ponents from CCMS and other sources (e.g. before classification models were introduced in
a company) or unstructured and unclassified PDF documents or other file formats used for
archiving. Especially these legacy files play an important role in technical documentation
because manufacturers have a legal obligation to retain documents for several years after
product deployment (e.g. in the European Union the mandatory duty to preserve documen-
tation for machinery is 10 years (2006/42/EC, 2006)).

This discrepancy results in potential differences between training and test data regarding
format, structure and quality, which a domain-specific classification procedure has to take
into account.

4.7. Quality assurance

Due to high legal standards and safety implications that adhere to technical communica-
tion material, a proper quality assurance is mandatory before publishing (IEC 82079-1, 2012;
ISO 9001, 2008). Especially in the European Union all necessary technical documentation
for machinery is considered as integral part of the product (2006/42/EC, 2006). The correct-
ness and completeness of published documents is, therefore, crucial for the integrity of the
whole product. Because some CCMS rely on classifications of content components for an
automated composition of documents, the classification algorithm is a possible vulnerability
for product integrity. These requirements entail the need for a measurable confidence score
which can be used as a threshold for quality assurance in cases where the classification
results may be unreliable.

5. IMPLICATIONS

In the following section we derive implications for supervised learning and automated
classification of content components from characteristics presented in the previous section
and verify them with our test data (cf. table 1).

5.1. Feature selection

Standardized terminology and grammatical word patterns decrease the total number of
distinct words and word combinations in technical documentation in comparison to other
text types. This is generally preferable in text classification, as it reduces the usual high
dimensionality of the feature space (Caldas et al., 2002). As content components are also
much smaller than documents (cf. section 4.5), the amount of features for representation of
an object is further reduced. However, most content components in technical communication
have both distinct single words and recognizable word patterns as important characteristics
of their information or product related classification (see explanation in sections 4.3 & 4.4).
Although an optimal feature selection depends on the specific characteristics of a data set,
a combination of single words and word patterns works best on across diverse data sets (cf.
table 2 for w;; = TF-ICF-CF).

Our results confirm the assumption that a combination of n-grams (where n is the
number of words per group) is in most cases the preferable method for representing content
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TABLE 2. Accuracy for different n-grams as tokens (classification task: information type level 1), where
n is the number of words per group for w;; = TF-ICF-CF. Best result per set in bold.

n SetA(en) [%] SetB (de)[%] SetC(de)[%] SetD (en)[%] Average [%]

1 86.7 78.5 75.9 75.5 792
2 91.7 85.4 81.7 82.1 85.2

3 92.5 85.9 73.6 75.7 81.9

4 92.1 83.7 67.9 73.6 79.3

{1,2} 90.1 83.5 79.7 80.7 83.5
{2,3} 91.9 87.0 81.1 82.4 85.6
{1,2,3} 91.6 85.3 82.6 83.6 85.8

components (cf. Table 2 for w;; = TF-ICF-CF). Taking the MSE of cross validation tests
into account (between 1-3% on all tests) it demonstrates, that the best average accuracy is
achieved by combined word patterns selected as features (n = {1,2} and n = {1, 2, 3}). Be-
cause a high number of features can negatively impact computing performance, n = 2 is the
best preference for industrial applications. Processing time for classification can be greatly
reduced while maintaining good accuracy. There was no significant correlation between the
language of the content and the optimal value for n.

5.2. Stemming

Applying a list-based stemming for German-language test data did not improve classi-
fication accuracy and in some cases even decreased classifier performance. This behavior
can be traced back to the use of word patterns as features, which can convey important
grammatical meaning (e.g. verb conjugations when classifying information types). As a
consequence we did not use any stemming on words.

5.3. Feature weighting

There are several ways to assign contextual weight to a feature with TF-IDF as the best
known method (Caldas et al., 2002; Ko, 2012; Lan et al., 2005; Liu and Yang, 2012). TF-IDF,
mostly used in document retrieval, combines overall term frequency with the inverse docu-
ment frequency (e.g. in Baeza-Yates and Ribeiro-Neto (1999)), which serves as a indicator
on how unique a specific term ¢ is for a document n:

N
Wij = tfij -log( (1

E->
There are several TF-IDF variants, which for example apply smoothing to account for cases
where term frequency is zero (Liu and Yang, 2012). We will refer to this variant as TF-
IDFsmooth:

1+N

7

To improve accuracy of document categorization, TF-IDF has been extended to TF-IDF-CF,
which considers in-class characteristics of features (Liu and Yang, 2012):
LEN ty
n; C 7

However, in CCM the reference size of one unit is a content component and not a document.

wij = log(1+tf;;) - log( ) 2

wij = log(1 +tfy;) - log( 3)
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TABLE 3. Accuracy for different weighting methods (classification task: information type level 1) for
n = {1, 2, 3}. Best result per set in bold.

Wi Set A (en) [%] SetB (de) [%] SetC (de) [%] SetD (en)[%] Average [%]
TF-IDF 25.3 50.5 25.2 47.6 37.2
TF-IDFmooth 63.5 39.8 25.2 65.4 48.5
TF-IDF-CF 85.8 69.2 72.6 69.4 74.3
TF-ICF-CF 91.6 85.3 82.6 83.6 85.8

Therefore, document-based weighting is not necessarily suitable for component classifica-
tion tasks. Due to the nature of our training data, from which we can derive overall token
frequency t f; as well as in-class frequency cf;; and inverse class frequency icf;;, we adapted
TF-IDF-CEF to utilize inverse class frequency (ICF) to differentiate between classes instead
of IDF. For a set of distinct classes C' with classes j and tokens ¢ weight w;; calculated with
TF-ICF-CF is:
Cl,  tfij
wi; =log (14 tf;) - log (1 + tfi) c,

Our results confirm that TF-ICF-CF performs best as weighting method on our data
compared to other document-oriented schemes (cf. table 3 for n = {1, 2, 3}).

An additional advantage of the proposed TF-ICF-CF metric is the independence from
document units (in this case: content components) when calculating the weights, which
leads to a very performance efficient training phase, that only has linearly dependencies
on the number of classes and the number of extracted features. This is possible, because in
PI classification frameworks a content component is always an instance of one intrinsic class
or class combination.

The TF-ICF-CF measure is therefore suitable for applications which focus on mutual
characteristics of classes and don’t rely on information about single units within a class (such
as in information retrieval). Examples for applications of TF-ICF-CF include supervised
learning (as shown in this work) and quality measures for classification systems (e.g. class
distribution, missing classes, average class distance).

“)

5.4. Semantic quantifiers

Semantic information about text structure of content components is usually available in
training data in the form of XML elements, their attributes or their meta-structure (Di lorio
et al., 2012). However, this additional information is usually missing in test data (as for
example in legacy documents, such as PDF), which makes a direct comparison difficult. To
circumvent this, it is possible to artificially increase the term frequency ¢ f; with a quantifier
q for tokens that have special semantic meanings in one class (e.g. headings, emphases,
results), so that in supervised learning ¢ f; is extended to:

tfig=1tfixq forg>0 5)

Results from previous work (Oevermann and Ziegler, 2016) show that for 2 < ¢ <
5, classification accuracy can improve up to 10% (¢ = 2.5). This can be traced back to
tackling a well-known problem in high-dimensional feature selection for text classification:
lack of good predictive features, which discriminate a class (Forman, 2004). This effect is
also known as the siren pitfall.

However, quality and choice of semantic structures for quantification heavily influence
the benefits of semantic qualifiers. Elements for semantic weighting can only be chosen
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by hand at the moment, leading to a difficult and biased direct comparison between data
sets with different information models. We tried to automate this selection based on two
hypotheses: (1) Selection of elements which are unique for one class and are therefore more
relevant to that class and (2) applying the TF-ICF-CF weighting method to all elements and
choosing the ones with the highest weight per class. Both attempts did not significantly im-
prove classification results or even decreased accuracy in cross validation due to overfitting.

5.5. Confidence scoring

Based on the reasons discussed in section 4.7, it is highly desirable to measure confi-
dence of classification results for integrating automated classification into an editorial work-
flow. While in retrieval scenarios, like filtering in a CDP, wrong or missing classification
is inconvenient (recall is important), it can be crucial for automated publishing processes
(precision is important).

There are several methods for comparing per-class classification scores s., such as the
softmax function or the standard deviation, however neither of them suited our need for a
reliable quality assurance measure. We therefore, decided to use a simple ratio-based score
(see eq. 6).

p=12% ©6)

51 — Sn

We base our confidence score r on the presence of single outliers (high confidence)
or close runner-ups (low confidence). Per-class classification scores s. for n classes c are
sorted from high (1) to low (n). r is then expressed as ratio of first to second and first to last
classification choice.

6. RESULTS & DISCUSSION

We tested our assumptions with 11 different classification tasks based on 4 data sets (A-
D) which are outlined in table1l. General results are listed in table 4, details can be found in
tables 2, 3 and 5. The different tasks result from company-specific PI classification models
of the data and vary considerably in their characteristics.

6.1. General results

The best results were achieved with intrinsic level-1 classifications of information types
(91.6% =+ 1.7 on 10 classes for set A) and product types (82.5% =+ 2.1 on 28 classes for set
B). With set-specific feature selection accuracy could be further improved up to 92.5% +2.3
on 10 classes for set A. Level-2 results of information classes vary between 74.8% (D)
and 87.8% (A). For this scenarios accuracy could be increased by incorporating fallback
mechanisms as described in section 8.3.

The outcome of our experiments show, that a VSM-based classification process can be
highly viable in the presented use cases (cf. section 7). All results are based on a generalized
parameter set (zero configuration) and unmodified production data exported from CCMS,
which is of major importance for a real-world application of our method. For certain cases,
we could show with our data, that product classification problems can be solved with the
same methods as information type classification. Experiments on more data sets have to be
carried out to confirm this observation.

Based on our limited data we are not able to draw final conclusions about the effect of
outer factors (information model, set size, component size, language, classification type and
number of classes) on accuracy results. Consistent with our subjective estimation we found,

11
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TABLE 4. Accuracy for different classification tasks for n = {1, 2, 3} and w,;; = TF-ICF-CF.

Set Language  Classification task Classes  Accuracy [%] MSE
A en-US information type (level 1) 10 91.6 1.7
information type (level 2) 26 87.8 3.6

B de-DE information type (level 1) 6 85.3 2.5
information type (level 2) 22 78.0 2.3

product type (level 1) 28 82.5 2.1

C de-DE information type (level 1) 11 82.6 3.1
product type (level 1) 22 74.5 7.1

D de-DE information type (level 1) 8 78.4 6.8
information type (level 2) 14 80.7 4.8

en-GB information type (level 1) 8 83.6 3.7
information type (level 2) 17 74.8 4.1

that the most important factor for good classification performance is high quality content.
This includes a well defined classification model, correctly performed manual classification
and text written in a standardized manner according to writing guidelines. To measure these
quality aspects of content in a non-subjective way is a topic for future research.

6.2. Correlations
We found measurable correlations” between:

(1) the size of the training data and the MSE of cross validation tests (p = —0.6)
(2) the average size (%rgs) of content components and the classification accuracy (p = 0.7)

Although not significant for our data, we expect to find correlations between the number
of classes and classification accuracy on a wider scope of data collections, because the
probability of correct classification decreases with an increasing number of classes. Within
single data sets this is already observable, when comparing accuracy results between levels 1
and 2 on information classes. One anomaly, for level-2 classification having better accuracy
than level-1 for the German data of set D, lies within the MSE.

6.3. Selection and weighting of features

Results in tables 2 and 3 show, that the selection and weighting of features can be
adjusted towards the characteristics of content components.

Due to the standardized nature of texts in technical communication we can show, that a
combination of word groups is the best way to represent content components (with bigrams
as an performance-efficient alternative).

For weighting these features, the TF-ICF-CF method could significantly improve classi-
fication results over document-oriented approaches (cf. table 3).

cov(X,Y)
oOX0Yy

7Correlation measured as Pearson correlation coefficient: PxX)Yy =
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6.4. Classification confidence

To test the reliability of a quality control which is based on a confidence threshold, we
calculate confidence scores on cross validation and isolate content components which have
a wrong classification but a high confidence score (r > 0.7).

TABLE 5. Fraction of wrongly classified content components (F) where confidence score » > 0.7
(classification task: information type level 1) for n = {1, 2, 3} and w;; = TF-ICF-CF.

Set A (en) [%] SetB (de) [%] SetC (de) [%] SetD (en) [%] Average [%]

Frso7/F 4.49 1.59 9.49 4.76 5.08

Our results show, that a well chosen threshold (here: » > (.7) enables fully automated
workflows, where automatically classified content components with a high confidence score
can be processed without further manual control while keeping error rate low.

6.5. Limitations

Due to the lack of available research on automated classification in the field of technical
communication there is no baseline for cross-comparison of results. Additional experiments
on the same data with alternative machine learning methods for text classification need to be
conducted in order to get a more general evaluation.

7. APPLICATIONS

The following sections give a short overview of potential applications for the automated
classification of content components.

7.1. Authoring assistance

Authors, who create content in CCMS, usually set the class of the content when they start
writing. In some cases the content changes over time or the author chooses the wrong class.
This can lead to problems in identifying the component at a later stage of the lifecycle. Before
storing the newly written content, automated classification can act as additional quality
assurance in the background by comparing the manually assigned class with results of the
automated classification (Oevermann, 2016a). If they differ, the author should be advised to
double check the assigned class (e.g. in form of a software-triggered confirm dialog box).

7.2. CMS data migration

With the introduction of a CCMS, companies often start using classification models (e.g.
PI classification) to take advantage of more advanced features, such as document aggregation
or retrieval functions. Furthermore, it can be observed that the implementation of a CCMS
can effect writing styles of authors (Bailie and Huset, 2015). To migrate existing (structured)
content to the new CCMS it is also necessary to add classification to legacy content, which is
a time consuming task. A possible solution to reduce manual work is to select a representative
fraction of the corpus (e.g. 500 - 1000 content components) as training set and classify the
remaining content in an automated way. Based on a confidence threshold, technical writers
can then review content components for which the assigned classification might be wrong.
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7.3. Unstructured documents

Another application based on component-based classification is the (re-)segmentation
of unstructured documents, such as legacy PDFs, for the use in information retrieval, as
described by Oevermann (2016b).

Text is extracted from a PDF document and split into words. The set of extracted words
W is grouped into arbitrary text chunks C' = {cy, ..., ¢, }, where ¢; C W. The size of these
chunks is based on the average word count of a content component: a (which can be derived
from the training data, cf. table 1). Text chunks are distributed across the document via an
offset r € N with r < a. This offset defines the starting position for each chunk. Therefore, a
text chunk ¢; at position ¢ can be defined as (for¢ > 1): ¢; = {W(i—l)*w Wi 1)srs1s -0 W(i_l)*r+a}
(Oevermann, 2016b). In the following step all text chunks are sequentially classified with
the methods described in this paper and the confidence of each classification is calculated
(cf. section 5.5). Through clustering of similar classified text chunks, segments of similar
semantic meaning (according to the intrinsic class) can be reconstructed (e.g. sections of a
specific information type or on a specific part on the product). Boundaries between sections
can be observed, when the confidence of the classifier falls to a local minimum or below
a defined threshold. This allows us to narrow down page ranges and regions within pages
of a specific classification in a way that is completely independent from any formatting
information contained in the PDF file and can also work with plain text obtained from an
OCR-based preprocessing.

7.4. Structured search

Content which is classified can be made available for faceted search which allows users
to narrow down full-text searches by e.g. type of information.? Filtering by class is also a
common use case for content delivery portals, where some filters can even be set automati-
cally (e.g. derived from service orders) to prepare information. Further applications include
auto suggestions per classification or context-aware searches.

8. OUTLOOK

In upcoming work we will extend our research further to other data sets and focus on
unstructured documents as source for classification. We plan to refine our models to include
grammatical patterns and use alternative classification techniques. In future research we also
want to include alternative feature extraction and weighting methods, such as AFE (Biricik
et al., 2009).

8.1. Language

Globalized companies write content components in one source language and translate
them into several target languages. This makes it possible to measure classification accu-
racy for the same content across different languages. Results could answer questions about
whether some languages are more suitable for classification based on statistical NLP than
others or if classification accuracy decreases after translation. First experiments on feature
selection (see section 5.1) could not find any correlations but have to be repeated with a
larger collection of content components in different languages.

If the language of the content does not affect accuracy, the classification results could be
used to rank translations or translation vendors. The underlying hypothesis for such a ranking

8 As an example: a service technician might only need maintenance information for his assigned task
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states that a good translation does not change classification accuracy. Therefore, translation
quality could be tested in an automated way, where significant decreases in accuracy are used
as indicators for poor translations.

8.2. Linguistic features and word order

At the moment features for classification are only obtained through statistical methods
and do not incorporate linguistic features such as the verb form or the inflection of a noun.
This information could be used to improve classification results, especially when classifying
information types in technical communication where grammatical patterns often convey the
type of content (e. g. instructional or descriptive). Another important aspect of grammatical
patterns is word order (Le and Mikolov, 2014). In the current implementation this informa-
tion is only preserved within n-grams but not in the context of content components. Using
the position of a word or word pattern within an content component as an additional feature
could improve accuracy.

8.3. Taxonomy fallback

In the current implementation, the classification process is unaware of existing hierar-
chical relations between classes and considers every level of the taxonomy as a separate
set of classes. With this method, accuracy decreases to subordinate classes (cf. table 4).
Reasons can be found, for example, in the increasing semantic and syntactical similarity of
neighboring classes, making it harder for the classifier to distinguish between them.

Especially for use cases in information retrieval it may, therefore, be desirable to have
fallback mechanisms in place. They can resort to a taxonomic parent class if classifier
confidence is below a certain threshold and ensure that recall for class-based filtering of
content components stays high in lower levels of the classification model. This behavior
of trading accuracy for usability is also known as graceful degradation (Menychtas and
Konstanteli, 2012).

Another way to use taxonomic knowledge for improving accuracy is to include classifi-
cation scores of higher-level classes in cases, where two classes have similar cosine measures
but different parent classes. If confidence is higher on the superordinate level, this can used
to distinguish subordinate classes.

8.4. Quality measures for classification models

The quality of the underlying classification model heavily influences performance of
automated classification. For example, if classes are ambiguous, training data may be skewed
due to wrong manual classification or similar instances belonging to different classes. In
classification scenarios based on the vector space model, such as ours, this can often be
observed as abnormal distribution of class vectors. Ambiguous classes tend to have similar
directions while other classes may be missing, if the classifier regularly places them between
the same two classes. In future research we want to develop a model, that can predict such
anomalies and help to measure the quality of a classification model based on training data.

Furthermore, well defined and distinct classification models and good classification by
technical writers also should result in a close to 100% accuracy rate when training and
validating with the same data set (self validation). Though overfitting of the trained model
is generally not desirable, this behavior can be used in other ways. Self validation can be
utilized to measure general quality of classification or the overall classification model. We
observed in our tests that classification errors in self validation can be a strong indicator
of wrong manual classification or an ambiguous classification model. Generating reports,
which highlight content components with classification mismatches in self validation can

15
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help to spot wrongly classified objects. In future research we want to extend these reports
with information about the presumed reason of the mismatch (e.g. either problems with the
classifications system or with the object).

9. CONCLUSIONS

Content components used in technical communication have special characteristics which
entail the need for a domain-specific classification method. Our results show that a tai-
lored procedure model for this content type can improve accuracy in classification tasks
in comparison to more general or document-centered approaches. As shown in this article,
there are multiple real-world scenarios where automated classification is applicable and
necessary, especially by enabling advanced information access methods in the industrial
sector (e.g. for service technicians). PI classification models provide a suitable framework
for these applications and can be incorporated in machine learning scenarios, as shown in
our experiments. First results show that different classification tasks can be solved by the
introduced method. In comparison to previous work we could expand the scope to product-
related classifications, which we could successfully cover with our method.

We identified several areas of domain-specific adjustments and made proposals for im-
proving classifier performance. The improvements include the combination of word group
combinations (n = {1,2} and n = {1,2,3}) as features for classification and a modified
token weighting scheme for in-class characteristics (TF-ICF-CF). Through additional exper-
iments we could also show, which features can serve as alternative for performance-critical
training tasks (n = 2). We made recommendations for the use of stemming, hierarchical clas-
sifications, semantic quantifiers and a confidence measuring on cosine similarity classifier
results. Furthermore we discussed and tested classification behavior for different class types
and levels within the PI classification method. Finally, we presented several applications of
our method and proposed topics for future research on this subject. Our adjustments have
shown significant improvements compared to document-oriented or more general methods
and are a first step towards an automated classification of content components in technical
communication.
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SUPPLEMENTARY MATERIALS

We implemented a platform-independent framework for the proposed methods to verify
the application-ready approach. The framework is designed to allow for easy extension,
configuration and usage. Therefore, it is possible to add additional functionality such as
similarity measures for content components, analyses for unstructured content or exports of
results in various data formats. A browser-based demo? and corresponding source code'” are
publicly available.

9nttp://coin.fastclass.de
Onttps://github.com/j-oe/coin-demo
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